In a historic milestone, Azure Quantum demonstrates formerly elusive physics needed to build scalable topological qubits

Microsoft’s Azure Quantum program has developed devices that can create quantum properties which scientists have imagined for nearly a century but have not been able to unambiguously produce in the real world — until now.

 

It’s a key scientific breakthrough that demonstrates the elusive building blocks for a topological quantum bit, or qubit, which Microsoft has long pursued as the most promising path to developing a scalable quantum computer that will launch a new generation of as-yet-unimagined computing capabilities for Azure customers.

 

“What’s amazing is humans have been able to engineer a system to demonstrate one of the most exotic pieces of physics in the universe. And we expect to capitalize on this to do the almost unthinkable — to push towards a fault-tolerant quantum machine that will enable computation on an entirely new level that’s closer to the way nature operates,” said Krysta Svore, a Microsoft distinguished engineer who leads the company’s quantum software program.

 

“It’s never been done before, and until now it was never certain that it could be done. And now it’s like yes, here’s this ultimate validation that we’re on the right path,” she said.

 

Building on two decades of scientific research and recent investments in simulation and fabrication, the Azure Quantum team has engineered devices that allow them to induce a topological phase of matter bookended by a pair of Majorana zero modes. These quantum excitations don’t normally exist in nature and must be coaxed into appearing under incredibly precise conditions.

 

Scientists have sought to create and observe these excitations since they were first theorized about in 1937. More recently, they’ve realized that Majorana zero modes can play an important role in protecting quantum information and enabling reliable computation.

 

The Azure Quantum team has also been able to produce what is known as a topological phase and to measure the topological gap, which quantifies the stability of the phase.

 

 

The ability to create and sustain a quantum phase with Majorana zero modes and a measurable topological gap removes the biggest obstacle to producing a unique type of qubit, which Microsoft’s quantum machine will use to store and compute information, called a topological qubit. It’s the foundation for Microsoft’s approach to building a quantum computer that is expected to be more stable than machines built with other types of known qubits, and therefore scale like no other.

 

Around the world, scientists are racing to better understand the complicated chemical or molecular processes that could help remove climate warming gases from the atmosphere, create better batteries or sustainable sources of energy, produce more food on a single acre of land or help remove pollutants to create clean water.

 

But even with today’s massive computing capabilities, some of these problems exceed the limits of classical computers, which would require years or decades or the lifetime of the universe to solve. By contrast, quantum computers seek to use quantum mechanics — the same laws and mathematical equations that describe how subatomic particles behave — to process information in entirely new ways and on a scale that has been previously unattainable.

 

“Figuring out how to feed the world or cure it of climate change will require discoveries or optimization of molecules that simply can’t be done by today’s classical computers, and that’s where the quantum machine kicks in,” said Microsoft’s quantum corporate vice president Zulfi Alam, who said he thinks a lot in his work about how to leave the world in a better place for his four-year-old.

 

“I don’t know that we’ve done that in the last two or three generations,” he said. “So hopefully we can give back now and do something to help heal the planet, and I believe we need the computational power of quantum computing to accomplish that.”

 

Link:

https://news.microsoft.com/innovation-stories/azure-quantum-majorana-topological-qubit/

 

2022-03-15